Welcome to the Delta Care Rx Blog

The contents of this blog contain topics relevant to end of life care written by our own hospice clinical pharmacists. Continue to check this site regularly for the newest post or subscribe to the RSS feed below.
Jessica Horsley, PharmD

Medication Reconciliation and Transitions of Care at End of Life

According to The Joint Commission, medication reconciliation is the process of comparing a patient's medication orders to all of the medications that the patient has been taking. This reconciliation is done to avoid medication errors such as omissions, duplications, dosing errors, or drug interactions. It should be done at every transition of care in which new medications are ordered or existing orders are rewritten. Transitions in care include changes in setting, service, practitioner or level of care. Accurate and complete medication reconciliation can prevent numerous prescribing and administration errors. Medication errors related to medication reconciliation typically occur at the "interfaces of care"—when a patient is admitted to, transferred within, or discharged from a health care facility. Common causes of medication reconciliation errors include inaccuracies or omission during transcription, poor documentation, communication breakdown, and workflow disruption.

Additionally, in hospice and palliative care, some patients may be too ill, injured, young, or disabled to actively participation the medication reconciliation process. Patients may need the assistance of another person (e.g., family member, significant other, surrogate decision maker) if they are overwhelmed in managing their condition, are not proficient in speaking or reading English, or face health literacy challenges that might prevent them from understanding medication use directions. When the patient is unable to actively or fully participate in the medication reconciliation process and has requested assistance from another person, involve the authorized person(s) in the medication reconciliation process. This involvement should occur at all interfaces of care . 

Medication Reconciliation Best Practices:

1. The hospice has a standardized medication reconciliation process in place that is completed and reviewed by the IDT within 5 days of the initiation of care.

a.Medication reconciliation needs to be performed at every nursing visit comparing most current medication sheet from EMR to med sheet that is in patient's home.
b.Medication reconciliation occurs at every IDT meeting where patient cases are reviewed.

2. Any discrepancies that are identified are clarified with the physician and/or pharmacy consultant within 24 hours.

3. There is a process in place to review current medications to determine which ones are related to the primary and secondary diagnosis and therefore the financial responsibility of the hospice.

a. First Verify – collect an accurate list of ALL medications the patient is taking. This becomes the “ONE TRUE SOURCE”
b. Second, Clarify – any questions about which drugs, which dose and which frequency.
c. Third, Reconcile by reviewing this list with the hospice physician and/or pharmacy consultant along with any questions or concerns in order to obtain clarification or revised orders.


4. Provide medication and medication reconciliation education to staff and consider as yearly competency.

a. Assure Staff Training includes at least the following:
        i. Ask the patient/caregiver before the first visit to collect all of the patient’s medications. 
        ii. Note any discrepancy between the prescription on the bottle and what the patient states he/she is taking. 
        iii. Ask about the use of non-prescription medications. 
      iv. Identify any combination of medications that may be contraindicated or medications that seem to be inappropriate such as those on the Beers Criteria.

5. Assure staff has access to AND a process in place to use up to date medication information and software programs to analyze medication interactions, duplication, adverse effects etc.

6. Assessment of the patient and caregiver's ability to administer medication should be done at every nursing visit so that teaching can be customized to their needs and to enhance the safety of medication administration.  Hospice staff can consult with the Delta Care pharmacist during the visit to ensure that questions are answered.

Many of these “best practices” are already in place for your hospice by using Delta Care Rx on-demand pharmacist services. Utilizing a staff properly trained for appropriate medication reconciliation with the patient or caregiver paired with the consultation and information provided by Delta Care pharmacists is an important partnership to prevent dangerous medications errors and curb symptom management issues that may be due to inappropriate medication use and interactions. Although data specifically related to medication errors in hospice and palliative care are sparse, one study found that all hospice patients had at least one medication discrepancy, with an average of eight per patient. Most commonly these discrepancies were omission of medications. Most drug interactions identified were moderately severe. Owing to the fact that polypharmacy often increases as a patient ages and/or becomes more ill, it is prudent to always perform accurate medication reconciliation at each transition of care and provide timely updates to medication profile to ensure that an accurate medication list is always at the ready.


References:
1. The Joint Commission. Using medication reconciliation to prevent errors. Sentinel Event Alert. January 2006; 35. Available from:http://www.jointcommission.org/assets/1/18/SEA_35.PDF
2. Visiting Nurses Association of America. Patient Safety: Medication reconciliation and management. VNAA Blueprint for excellence. Available from: http://0101.nccdn.net/1_5/3d0/168/33c/A-Guide-to-Medication-Reconciliation-and-Management.pdf
3. Kemp L, Narula P, McPherson M, Zuckerman I. Medication reconciliation in hospice: a pilot study. Am J Hosp Palliat Care [serial online]. June 2009;26(3):193-199. Available from: MEDLINE Complete, Ipswich, MA. 

Continue reading
564 Hits
Shane Donnelly, PharmD

Renal Dosing for Commonly Used Oral Antibiotics

The kidneys are one of the most important organs responsible for eliminating substances from the body. Structural damage to the excretion mechanisms of the kidneys slows the filtration and elimination process down, allowing drug metabolites to stay in the body for longer periods of time. For some medications with inactive and harmless metabolites, this is not a relevant issue. However, for medications with active metabolites or medications that are not completely metabolized by the liver, this poses a potentially significant problem. The inability to efficiently eliminate active drug molecules puts patients at risk for harmful adverse effects. Antibiotics are particularly interesting in this regard. When dosed appropriately and efficiently eliminated by the body, side effect profiles are often mild and harmless. However, when dosed inappropriately in a patient with renal impairment, active drug molecules or metabolites can build up and may induce or exacerbate neurological, cardiac, or pulmonary comorbid conditions.

The table below provides a foundation for dosing common antibiotics in patients with renal impairment. It is important to utilize this table in the manner in which it was intended; purely as a reference point. Individualize treatment based on the patient and the indication that is being treated.

Renal Dosing Guide for Commonly Used Oral Antibiotics  
 
Antibiotic Renal-Dosing Special Considerations  
Amoxicillin (Amoxil) Amoxicillin + Clavulanate Potassium (Augmentin)

Severe Impairment (CKD Stage 4) give 250-500 mg amoxicillin q12h

End-Stage Disease (CKD Stage 5) give  250-500 mg amoxicillin q24h

All products containing

875 mg of Amoxicillin or extended-release formulations should be avoided in patients with severe impairment.

 
Azithromycin (Z-Pack, Zithromax) None. Use with caution. No specific renal dosing required in manufacturer's labeling.  
Cefaclor (Ceclor) None. Use with caution. No specific renal dosing required in manufacturer’s labeling.  
Cefuroxime (Ceftin)

Severe Impairment (CKD Stage 4) give the indicated dose q24h

End-Stage Disease (CKD Stage 5) give the indicated dose q48h

Alternatively, may dose at 15 mg/kg/dose q24h in patients with End-Stage Disease.  
Cephalexin (Keflex)

Moderate-Severe Impairment (CKD Stage 3-4) give 500 mg q8-12h

End-Stage Disease (CKD Stage 5) give 500 mg q12-24h

Cost-effective option for treating skin and soft tissue infections and may be used as an alternative agent for uncomplicated UTIs.  
Ciprofloxacin (Cipro)

Moderate Impairment (CKD Stage 3) give 250-500 mg q12h

Severe Impairment (CKD Stage 4) give 250-500 mg q18h

End-Stage Disease (CKD Stage 5) give 250-500 mg q24h

If using extended-release formulation, dose at 500 mg q24h with Severe Impairment.  
Clarithromycin (Biaxin) Severe Impairment (CKD Stage 4) decrease the dose by 50% Many drug interactions. May need to decrease dose with certain HIV medication.  
Clindamycin (Cleocin) None Potential alternative to penicillin due to allergy.  
Doxycycline Monohydrate (Vibramycin) None Potential safe alternative for community-acquired pneumonia or MRSA in patients with renal dysfunction.  
Erythromycin (Ery-Tab) None Medication can be used to induce gastric motility.  
Levofloxacin (Levaquin)

Moderate Impairment (CKD Stage 3) give 250 mg q24h +/- 500 mg loading dose (or) 750 mg q48h

Severe Impairment (CKD Stage 4) give 250-500 mg q48h +/- 500-750 mg loading dose

Dosing largely depends on indication. Utilize dose of that fits the suspected organism/infection.  
Metronidazole (Flagyl) None. Use with caution. Metabolites may accumulate in patients with End-Stage Renal Disease.  
Nitrofurantoin (Macrobid, Macrodantin) Moderate Impairment (CKD Stage 3) note that use is contraindicated Some literature1 suggests nitrofurantoin can be used safely in patients with a CrCl >40 mL/min for short-term treatment of uncomplicated UTI's (<1 week).  
Penicillin V Potassium (Pen VK) Use with caution. Excretion of penicillin is prolonged in patients with renal impairment.  
Sulfamethoxazole/ Trimethoprim (Bactrim, Septra)

Severe Impairment (CKD Stage 4) decrease the dose by 50%

End-Stage Disease (CKD Stage 5) note that use is not recommended

Dosing is highly dependent on indication.

*Per LexiComp, Wolters Kluwer Health 2
**Degree of Impairment and estimated Glomerular Filtration Rate: Moderate Impairment (CKD Stage 3): CrCl < 60 mL/min; Severe Impairment (CKD Stage 4): CrCl < 30 mL/min; End-Stage Disease (CKD Stage 5): CrCl < 15 mL/min

Age over 65 years old, hypertension, cardiovascular disease, diabetes, tobacco use, and obesity are all risk factors for developing chronic kidney disease 4. Many patients admitted to hospice have at least one of these risk factors. Awareness of the common signs of chronic kidney disease (known risk factors, consistent itching, changes in urine output, etc.4 can help the team to safely utilize medication.

Ultimately, the decision to treat and effectively dose antibiotics relies on the constant vigilance of the palliative care/hospice team. Awareness of the common dosing of antibiotics, the indications, and dosing for renal impairment can lead to better outcomes for patients who experience the uncomfortable reality of their diseases.


References:
1. Oplinger M and Andrews CO. “Drug Information Rounds: Nitrofurantoin Contraindication in Patients With a Creatinine Clearance Below 60 mL/min: Looking for the Evidence,” Ann Pharmacother, 2013, 47(1):106-11. 
2. LexiComp. Hudson, Ohio: Wolters Kluwer Health; c1978-2015. https://online.lexi.com/lco/action/home. 
3. The National Kidney Foundation. GFR. 2014. Available at: https://www.kidney.org/kidneydisease/siemens_hcp_gfr. 
4. Mayoclinic.org. Chronic kidney disease Risk factors - Mayo Clinic. 2015. Available at: http://www.mayoclinic.org/diseases-conditions/kidney-disease/basics/risk-factors/con-20026778.

Continue reading
1231 Hits
Michelle Mikus, PharmD

Rectal Medication Seizure Management Options

In end of life care, often times the oral route of medication administration is not an option. However, it is important that seizure prophylaxis be maintained beyond the patient's ability to swallow and that treatment options are known. The good news about rectal administration of seizure medications is that many antiepileptics that patients take orally can be given rectally. In addition, the dosages of these medications do not need adjusted from oral to rectal.

Phenobarbital is one of the oldest medications used for seizure prophylaxis. This medication is weight based and also takes 4-5 hours to reach peak concentration. For that reason, phenobarbital should not be used for acute seizure episodes. Dosages are most often 1-3mg/kg orally or rectally in divided doses (1-2 times daily). Note phenobarbital is sedating.

Carbamazepine immediate release tablets can be used rectally. Ideally, the same daily oral dosage is given rectally in 6-8 small, divided doses and the crushed tablets are put in a gelatin capsule when possible. Most patients require daily doses between 800-1200mg. Note carbamazepine serum concentrations should be monitored. Carbamazepine suspensions can also be used and would need to be diluted with an equal volume of water.

Valproic acid and divalproex sodium are of the most commonly used medications for seizure prophylaxis. Fortunately, they too can be used rectally when oral administration is not possible. If using the liquid formulations, dilute with an equal volume of water. Optimal response is seen at doses below 60mg/kg/day, in divided doses.

Lastly, a lamotrigine rectal suspension can be prepared out of the immediate release or chewable tablets. This is done by crushing the tablets and mixing into 6-10mL of room temperature water. Most patients find success at a dose of 250mg twice daily.

Benzodiazepines such as diazepam and lorazepam are commonly used rectally for acute seizures and should not be excluded from this overview.

There are many reasons that a patient may need to be on an antiepileptic drug: epilepsy, brain metastases, and even disease progression, to name a few. Using the above information, management of these medications beyond the oral route is possible and dose conversions are not necessary.


References:
1. Connelly, J., & Weissman, D. Fast Fact #229: Seizure Management in the Dying Patient. Retrieved September 4, 2015, fromhttps://www.capc.org/fast-facts/229-seizure-management-dying-patient/
2. Krouwer H, Pallagi J, Graves N. Management of seizures in brain tumor patients at the end of life. J Palliat Med. 2000;3:465-475

Continue reading
516 Hits
Lori Osso-Connor, PharmD, CGP

Serotonin Syndrome in the Elderly

Serotonin Syndrome or serotonin toxicity occurs when there is overstimulation of the peripheral and central serotonin receptors which causes serotonin to accumulate in the body. Increased serotonin levels can occur through the following mechanisms: increased serotonin production, inhibition of serotonin reuptake, inhibition of serotonin metabolism, increased serotonin release, and/or stimulation of the serotonin receptor. Any medication or combination of medications that can increase the concentration of serotonin can cause serotonin syndrome. The medications most likely to be involved in contributing to serotonin syndrome include selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitor (SNRIs), tricyclic antidepressants (TCAs) or serotonin modulator antidepressants (trazodone).

SSRIs are often used in the treatment of depression. The elderly population is at increased risk of experiencing depression due to disability, co-morbid conditions, and/or the death of loved ones. Therefore, the use of antidepressants in the elderly is common. SSRIs exert their effect by blocking the reuptake of CNS neuron serotonin in the brain. Some examples of SSRIs include: Prozac (fluoxetine), Paxil (paroxetine), Celexa (citalopram), Lexapro (escitalopram), and Zoloft (sertraline).

Serotonin syndrome is often underdiagnosed and clinicians must be aware and identify early symptoms. Serotonin syndrome is diagnosed through clinical symptoms. The hallmark feature of serotonin syndrome is agitation. The common signs are usually a triad of features including: neuromuscular excitation (clonus, rigidity, hyperreflexia), autonomic stimulation (tachycardia, fever, sweating, diarrhea, hypertension), and changes in mental status (confusion, agitation, coma). The Hunter Serotonin Toxicity Criteria is recommended for diagnosing serotonin syndrome.

Serotonin syndrome may occur within minutes to hours of use of the offending medication(s). The severity could range from mild to severe, even resulting in death. Treatment consists of discontinuing the causative medication. Diazepam has been used to decrease hypertonicity. Serotonin antagonists such as cyproheptadine and chlorpromazine also have been used.
It is important for the pharmacist to be aware of medications that have the potential to cause serotonin syndrome and recognize to the signs and symptoms associated with it.

Medication Class Examples
Selective Serotonin Reuptake Inhibitors (SSRIs) citalopram (Celexa), fluoxetine (Prozac), fluvoxamine (Luvox), olanzapine/fluoxetine (Symbyax), paroxetine (Paxil)
Selective Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs) duloxetine (Cymbalta), sibutramine (Meridia), venlafaxine (Effexor)
Triptans

almotriptan (Axert), eletriptan (Relpax), frovatriptan (Frova), naratriptan (Amerge), rizatriptan (Maxalt), sumatriptan (Imitrex),

zolmitriptan (Zomig)

Miscellaneous

Medications- buspirone (Buspar), carbamazepine (Tegretol), cocaine, cyclobenzaprine (Flexeril), Fentanyl, 5-hydroxytryptophan, linezolid (Zyvox), lithium, L-tryptophan, meperidine (Demerol), methadone (Dolophine), methamphetamine (Desoxyn), methylene blue, metoclopramide (Reglan), mirtazapine (Remeron), ondansetron (Zofran), phenelzine (Nardil), selegiline (Eldepryl), St. John’s wart, tramadol (Ultram), tranylcypromine (Parnate), trazodone (Oleptro), valproic acid

Medication Classes- Ergot alkaloids, Tricyclic antidepressants

 


References:
1. Brown, Charles. "Drug-Induced Serotonin Syndrome." U.S. Pharmacist 17 Nov. 2010: Web. 27 Aug. 2015. 
2. Nguyen, Timothy, and Billy Sin. "A Case of an Older Adult Patients and Drugs Associated with Serotonin Syndrome." The Consultant Pharmacist 30.8 (2015): 455-57. 

Continue reading
473 Hits
Irene Petrides, PharmD

Hyperkalemia in the Elderly

Hyperkalemia or a rise in serum potassium concentration is an electrolyte disorder that has the potential to be a life threating condition. With increased aged there is increased risk for hyperkalemia. In the elderly, the loss of renal mass and comorbid conductions results in decreased renal function.1,2 Therefore the common regulatory mechanism of managing potassium is disrupted.3 Many medications can be associated with contributing to hyperkalemia including potassium supplements, potassium sparing diuretics, nonsteroidal anti-inflammatory drugs, angiotensin converting enzyme inhibitors, beta adrenergic blocking agents, heparin, digoxin, and trimethoprim-sulfamethoxazole.4 In order to avoid hyperkalemia certain precautions should be taken. This includes renal dosing and avoiding concomitant use of potassium altering medications. Signs and symptoms of hyperkalemia often are associated muscle paralysis, dyspnea, palpitations, nausea or vomiting and paresthesia. It is imperative to recognize these signs and symptoms as for hyperkalemia can be quickly fatal, resulting in respiratory paralysis or cardiac arrest.3

Management of hyperkalemia depends on severity and renal function. In patients with moderate potassium elevation and normal renal function, treatment simply results in identifying and removing the source of increased potassium levels and/or increasing the excretion of potassium.3 This includes a loop diuretic, aldosterone analogue, or initiating the controversial cation exchange resin (Kayexalate®).2 In patients with severe hyperkalemia and impaired renal function, aggressive treatment may comprise of intravenous insulin along with glucose, inhaled nebulized intravenous beta-2 agonist, intravenous calcium for cardiac toxicity, sodium bicarbonate to correct severe metabolic acidosis, and ultimately emergency dialysis.3

Kayexalate® (sodium polystyrene sulfonate) is a medication used in treatment of hyperkalemia. However it is important to keep in mind the safety label posted by the US Food and Drug administration in 2009.1 Kayexalate® is reported to cause colonic necrosis and other serious gastrointestinal adverse events including bleeding, ischemic colitis, and perforation.1,2 Therefore it is not recommended to use Kayexalate® with Sorbitol®.1,2,3 Due to this labeling, a more appropriate strategy in the treatment of mild to moderation hyperkalemia may be decreasing potassium intake increasing potassium depletion with the use of loop diuretics.1,2

In conclusion it is important to keep in mind prevention is key. A drug medication review is always necessary. All medications need to be evaluated especially over the counter medications. Many patients are on potassium supplements, non-steroidal anti-inflammatory drugs, angiotensin converting enzyme inhibitors. Decreased renal function in addition to medications associated with drug induced hyperkalemia is a recipe for disaster in the aging population Ultimately, appropriate prevention is desired in addition to close monitoring as well as treatment when necessary.3,4


REFERENCES:

1 Kamel, K. S., and M. Schreiber. 'Asking The Question Again: Are Cation Exchange Resins Effective For The Treatment Of Hyperkalemia?'. Nephrology Dialysis Transplantation 27.12 (2012): 4294-4297. Web.

2 Sterns, R. H. et al. 'Ion-Exchange Resins For The Treatment Of Hyperkalemia: Are They Safe And Effective?'. Journal of the American Society of Nephrology 21.5 (2010): 733-735. Web.

3 Elliott, M. J. et al. 'Management Of Patients With Acute Hyperkalemia'. Canadian Medical Association Journal 182.15 (2010): 1631-1635.

4 Perazella, Mark A., and Rex L. Mahnensmith. 'Hyperkalemia In The Elderly'. J Gen Intern Med 12.10 (1997): 646-656. Web.

Continue reading
474 Hits